Strong Solutions of the Fuzzy Linear Systems
نویسندگان
چکیده
We consider a fuzzy linear system with crisp coefficient matrix and with an arbitrary fuzzy number in parametric form on the right-hand side. It is known that the well-known existence and uniqueness theorem of a strong fuzzy solution is equivalent to the following: The coefficient matrix is the product of a permutation matrix and a diagonal matrix. This means that this theorem can be applicable only for a special form of linear systems, namely, only when the system consists of equations, each of which has exactly one variable. We prove an existence and uniqueness theorem, which can be use on more general systems. The necessary and sufficient conditions of the theorem are dependent on both the coefficient matrix and the right-hand side. This theorem is a generalization of the well-known existence and uniqueness theorem for the strong solution.
منابع مشابه
Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملSolutions of Fuzzy Linear Systems using Ranking function
In this work, we propose an approach for computing the compromised solution of an LR fuzzy linear system by using of a ranking function when the coefficient matrix is a crisp mn matrix. To do this, we use expected interval to find an LR fuzzy vector, X , such that the vector (AX ) has the least distance from (b) in 1 norm and the 1 cut of X satisfies the crisp linear system AX = b ...
متن کاملFully Fuzzy Linear Systems
As can be seen from the definition of extended operations on fuzzy numbers, subtraction and division of fuzzy numbers are not the inverse operations to addition and multiplication . Hence, to solve the fuzzy equations or a fuzzy system of linear equations analytically, we must use methods without using inverse operators. In this paper, a novel method to find the solutions in which 0 is not ...
متن کاملSolving LR fuzzy linear matrix equation†
In this paper, the fuzzy matrix equation $Awidetilde{X}B=widetilde{C}$ in which $A,B$ are $n times n$crisp matrices respectively and $widetilde{C}$ is an $n times n$ arbitrary LR fuzzy numbers matrix, is investigated. A new numerical procedure for calculating the fuzzy solution is designed and a sufficient condition for the existence of strong fuzzy solution is derived. Some examples are ...
متن کاملPositive solution of non-square fully Fuzzy linear system of equation in general form using least square method
In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...
متن کاملNEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1107.2126 شماره
صفحات -
تاریخ انتشار 2011